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Two Variables Operation Continuity of Effect Algebras
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In this paper, we study two variables operation continuity of lattice effect algebra with
respect to its order topology.
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1. INTRODUCTION

Let L be a set with two special elements 0, 1, ⊥ be a subset of L × L. We
denote a ⊥ b if (a, b) ∈ ⊥. Also, let ⊕ : ⊥ → L be a binary operation. If the
following axioms hold:

(i) (Commutative Law). If a, b ∈ L and a ⊥ b, then b ⊥ a and a ⊕ b =
b ⊕ a.

(ii) (Associative Law). If a, b, c ∈ L, a ⊥ b and (a ⊕ b) ⊥ c, then b ⊥ c,

a ⊥ (b ⊕ c) and (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c).
(iii) (Orthocomplementation Law). For each a ∈ L there exists a unique

b ∈ L such that a ⊥ b and a ⊕ b = 1.
(iv) (Zero-Unit Law). If a ∈ L and 1 ⊥ a, then a = 0.

Then (L,⊥,⊕, 0, 1) is said to be an effect algebras (Foulis and Bennett,
1994).

Let (L,⊥,⊕, 0, 1) be an effect algebra. If a, b ∈ L and a ⊥ b we say that a

and b be orthogonal. If a ⊕ b = 1 we say that b is the orthocomplement of a, and
write b = a′. It is clear that 1′ = 0, (a′)′ = a, a ⊥ 0 and a ⊕ 0 = a for all a ∈ L.

We also say that a ≤ b if there exists c ∈ L such that a ⊥ c and a ⊕ c = b.
We may prove that ≤ is a partial order of L and satisfies that 0 ≤ a ≤ 1, a ≤
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b ⇔ b′ ≤ a′ and a ≤ b′ ⇔ a ⊥ b for a, b ∈ L. If a ≤ b, the element c ∈ L such
that c ⊥ a and a ⊕ c = b is unique, and satisfies the condition c = (a ⊕ b′)′. It
will be denoted by c = b 	 a. If a ≤ b but a 
= b, we write a < b.

The above showed that each effect algebra (L,⊥,⊕, 0, 1) has two binary
operations ⊕ and 	.

If the partial order ≤ of (L,⊥,⊕, 0, 1) defined as above is a lattice, then
(L,⊥,⊕, 0, 1) is said to be a lattice effect algebra.

2. ORDER TOPOLOGY OF EFFECT ALGEBRAS

A partial order set (�,�) is said to be a directed set, if for all α, β ∈ �, there
exists γ ∈ � such that α � γ, β � γ .

If (�,�) is a directed set and for each α ∈ �, aα ∈ (L,⊥,⊕, 0, 1), then
{aα}α ∈ � is said to be a net of (L,⊥,⊕, 0, 1).

Let {aα}α ∈ � be a net of (L,⊥,⊕, 0, 1). Then we write aα ↑, when α � β,
aα ≤ aβ . Moreover, if a is the supremum of {aα : α ∈ �}, i.e., a = ∨{aα : α ∈ �},
then we write aα ↑ a.

Similarly, we may write aα ↓ and aα ↓ a.
If {uα}α ∈�, {vα}α ∈ � are two nets of (L,⊥,⊕, 0, 1), for u ↑ uα ≤ vα ↓ v

means that uα ≤ vα for all α ∈ � and uα ↑ u and vα ↓ v. We write b ≤ uα ↑ u if
b ≤ uα for all α ∈ � and uα ↑ u.

We say a net {aα}α∈� of (L,⊥,⊕, 0, 1) is order convergent to a point a of L

if there exists two nets {uα}α∈� and {vα}α∈� of (L,⊥,⊕, 0, 1) such that

a ↑ uα ≤ aα ≤ vα ↓ a.

Let F = {F : F = ∅ or F ⊆ L and satisfies that for each net {aα}α∈� of F

if {aα}α∈� is order convergent to a, then a ∈ F }.
It is easy to prove that ∅, L ∈ F and if F1, F2, . . . , Fn ∈ F , then ∪n

i=1Fi ∈ F ;
if {Fµ}µ∈� ⊆ F , then ∩µ∈�Fµ ∈ F . Thus, the family F of subsets of L define
a topology τL

0 on (L,⊥,⊕, 0, 1) such that F consists of all closed sets of this
topology. The topology τL

0 is called the order topology of (L,⊥,⊕, 0, 1) (Birkhoff,
1948).

We can prove that the order topology τL
0 of (L,⊥,⊕, 0, 1) is the finest

(strongest) topology on L such that for each net {aα}α∈� of (L,⊥,⊕, 0, 1), if
{aα}α∈� is order convergent to a, then {aα}α∈� must be topology τL

0 convergent to
a. But the converse is not true.

Moreover, it follows from the definition of the order topology τL
0 of

(L,⊥,⊕, 0, 1) that the subset B of (L,⊥,⊕, 0, 1) is not a τL
0 -closed subset

iff there exists a net {aα}α∈� of B such that {aα}α∈� is order convergent to a, but
a /∈ B.

It is easy to prove that each a and b of (L,⊥,⊕, 0, 1), the closed interval
[a, b] is a τL

0 -closed subset of (L,⊥,⊕, 0, 1).
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But for open interval, the conclusion does not hold in general.

Example 1. Let L = [0, 1] × [0, 1], (x1, x2), (y1, y2) ∈ L and (x1, x2) ⊕ (y1, y2)
be defined iff x1 + y1 ≤ 1, x2 + y2 ≤ 1, and (x1, x2) ⊕ (y1, y2) = (x1 + y1, x2 +
y2). It is easy to prove that (L,⊥,⊕, (0, 0), (1, 1)) is an effect algebra. The open
interval ((0, 0), (0, 1)) is not a τL

0 -open subset of (L,⊥,⊕, (0, 0), (1, 1)).
Let (L,⊥,⊕, 0, 1) be an effect algebra, a ∈ (L,⊥,⊕, 0, 1). We denote N (a)

the set of all element c of (L,⊥,⊕, 0, 1) such that c can not compare with a. It
follows from [0, a] and [a, 1] are τL

0 -closed subsets of (L,⊥,⊕, 0, 1) that N (a)
is a τL

0 -open subset of (L,⊥,⊕, 0, 1).

3. ORDER CONVERGENT PROPERTIES

For the order convergent properties of nets in lattice effect algebras,
Riecanova proved the following conclusions (Riecanova, 1999):

Let (L,⊥,⊕, 0, 1) be a lattice effect algebra. For elements of L we have

(i) b′ ≥ aα ↓ a implies that aα ⊕ b ↓ a ⊕ b.
(ii) b ≤ aα ↑ a implies that aα 	 b ↑ a 	 b.

(iii) b′ ≥ aα order convergent to a implies that aα ⊕ b order convergent to
a ⊕ b.

(iv) b ≤ aα order convergent to a implies that aα 	 b order convergent to
a 	 b.

Now, we general conclusions (i)–(iv) to two variable operation cases, at first,
the following lemma is useful.

Lemma 1. (Riecanova, 1999). Let (L,⊥,⊕, 0, 1) be a lattice effect algebra, a,
b ∈ (L, 0, 1,⊕). Then we have

(1) A net {aα}α∈� of [a, b] is order convergent to c in (L,⊥,⊕, 0, 1) iff
c ∈ [a, b] and {aα}α∈� is order convergent to c in [a, b].

(2) Let τ
[a,b]
0 be the order topology on the subposet [a, b] of the poset (L,≤).

Then τL
0 ∩ [a, b] = τ

[a,b]
0 .

By applying Lemma 1, we can prove the following lemma easily.

Lemma 2. Let M = (L,⊥,⊕, 0, 1) × (L,⊥,⊕, 0, 1), (x1, x2), (y1, y2) ∈ M .
If (x1, x2) ⊥ (y1, y2) iff x1 ⊥ y1 and x2 ⊥ y2. Then (M,⊥,⊕, (0, 0), (1, 1)) is an
effect algebra if (x1, x2) ⊕ (y1, y2) is defined by (x1 ⊕ y1, x2 ⊕ y2). Moreover, if
a, b, c, d ∈ (L,⊥,⊕, 0, 1), then the order topology τ

[a,b]×[c,d]
0 of [a, b] × [c, d]

and τM
0 ∩ ([a, b] × [c, d]) are same, and the product topology τ

[a,b]
0 × τ

[c,d]
0 of

([a, b], τ [a,b]
0 ) × ([c, d], τ [c,d]

0 ) are also same.
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Theorem 1. Let (L,⊥,⊕, 0, 1) be a lattice effect algebra. For nets of
(L,⊥,⊕, 0, 1) we have

(1) If for each α ∈ �, b′
α ≥ aα , then aα ↑ a and bα ↑ b imply that aα ⊕ bα ↑

a ⊕ b.
(2) If there exists c ∈ (L,⊥,⊕, 0, 1) such that for each α ∈ �, bα ≤ c′,

aα ≤ c, then aα ↓ a and bα ↓ b imply that aα ⊕ bα ↓ a ⊕ b.
(3) If there exists c ∈ (L,⊥,⊕, 0, 1) such that for each α ∈ �, bα ≤ c′,

aα ≤ c, then aα is order convergent to a and bα is order convergent to b

imply that aα ⊕ bα is order convergent to a ⊕ b.
(4) If there exists c ∈ (L,⊥,⊕, 0, 1) such that for each α ∈ �, aα ≤ c ≤ bα ,

then aα is order convergent to a and bα is order convergent to b imply
that bα 	 aα is order convergent to b 	 a.

Proof: For simplicity, we only prove (1) and (4).
(1) Let b′

α ≥ aα , aα ↑ a and bα ↑ b. At first, we show that b′ ≥ a. In fact,
note that b′ ↓ b′

α ≥ aα ↑ a, so each α1 and α2 ∈ �, there exists β ∈ � such that
β ≥ α1 and β ≥ α2, thus, aα1 ≤ aβ ≤ b′

β ≤ b′
α2

. It follows from b′
α ↓ b′ that for

each α1, we have aα1 ≤ b′, therefore, b′ ≥ a is obvious.
Now, we prove that aα ⊕ bα ↑ a ⊕ b. It is clear that aα ⊕ bα ≤ a ⊕ b. If c ∈

(L,⊥,⊕, 0, 1) such that each α ∈ �, aα ⊕ bα ≤ c. Thus, each α ∈ �, aα ≤ c 	
bα . It follows again from aα ↑ a and c 	 bα ↓ c 	 b that a ≤ c 	 b. So a ⊕ b ≤ c.
This showed that aα ⊕ bα ↑ a ⊕ b.

(4) Let c ∈ (L,⊥,⊕, 0, 1) such that each α ∈ �, aα ≤ c ≤ bα , and aα be
order convergent to a, bα be order convergent to b. It follows from Lemma 1 that
aα is order convergent to a in [0, c] and bα is order convergent to b in [c, 1]. So,
there exist uα and vα in [0, c], pα and qα in [c, 1] such that a ↑ uα ≤ aα ≤ vα ↓ a,
b ↑ pα ≤ bα ≤ qα ↓ b. It follows from (1) and (2) of above easily that b 	 a ↑
pα 	 vα ≤ bα 	 aα ≤ qα 	 uα ↓ b 	 a. So bα 	 aα is order convergent to b 	 a.
This theorem is proved. �

4. TWO VARIABLES OPERATION CONTINUITY

For the order topology continuity of one variable operations, Riecanova
(1999) proved the following conclusions:

Let (L,⊥,⊕, 0, 1) be a lattice effect algebra. Then a net {aα}α∈� of
(L,⊥,⊕, 0, 1) has

(vi) If b′ ≥ aα for all α ∈ �, and {aα}α∈� converges to a with respect to
the order topology τL

0 , then {aα ⊕ b} converges to a ⊕ b with respect
to the order topology τL

0 .
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(vii) If b ≤ aα for all α ∈ �, and {aα} converges to a with respect to the
order topology τL

0 , then {aα 	 b} converges to a 	 b with respect to
the order topology τL

0 .
(viii) If b ≥ aα for all α ∈ �, and {aα} converges to a with respect to the

order topology τL
0 , then {b 	 aα} converges to b 	 a with respect to

the order topology τL
0 .

In order to study two variable operation continuity, we need the following
famous topology conclusion:

Lemma 3. Let (X, T1) and (Y, T2) be two topological spaces and f : (X, T1) →
(Y, T2). Then f is a continuous map iff for each closed subset A of (Y, T2), the
inverse image f −1(A) of A is a closed subset of (X, T1).

Our main results are

Theorem 2. Let (L,⊥,⊕, 0, 1) be a lattice effect algebra. Then we have

(1) If there exists c ∈ (L,⊥,⊕, 0, 1) such that each α ∈ �, bα ≤ c′, aα ≤ c.
Then aα is order topology τL

0 convergent to a and bα is order topology
τL

0 convergent to b imply that aα ⊕ bα is order topology τL
0 convergent to

a ⊕ b.
(2) If there exists c ∈ (L,⊥,⊕, 0, 1) such that each α ∈ �, aα ≤ c ≤ bα .

Then aα is order topology τL
0 convergent to a and bα is order topology

τL
0 convergent to b imply that bα 	 aα is order topology τL

0 convergent to
b 	 a.

Proof: For simplicity, we only prove (1).
First, we define map f : [0, c] × [0, c′] → L by f (x, y) = x ⊕ y. Now, we

only need to show that f is a continuous map of topological space ([0, c], τ [0,c]
0 ) ×

([0, c′], τ [0,c′]
0 ) into (L, τL

0 ).
Let B be a closed subset of (L, τL

0 ). If f −1(B) is not a closed subset of
([0, c], τ [0,c]

0 ) × ([0, c′], τ [0,c′]
0 ), it follows from Lemma 2 that f −1(B) is also not

a closed subset of ([0, c] × [0, c′], τ [0,c]×[0,c′]
0 ), so there exists a net (xα, yα) of

f −1(B) which is order convergent to (x, y) ∈ [0, c] × [0, c′], but (x, y) /∈ f −(B).
It is clear that xα is order convergent to x and yα is order convergent to y. It
follows from Theorem 1 (3) that xα ⊕ yα is order convergent to x ⊕ y. Note that
xα ⊕ yα ∈ B and B is a τL

0 -closed subset of (L,⊥,⊕, 0, 1), so, x ⊕ y ∈ B, thus,
we have (x, y) ∈ f −(B). This is a contradiction and the theorem is proved. �
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